USE OF WASTEWATERS FOR IRRIGATION OF ENERGY CROPS AS A STRATEGY TO COMBAT DESERTIFICATION

Ana Luísa Fernando

Universidade Nova de Lisboa/Faculdade de Ciências e Tecnologia Departamento de Ciências e Tecnologia da Biomassa Unidade de Biotecnologia Ambiental PORTUGAL ala@fct.unl.pt

***** Desertification:

Process that leads to

Ioss of ecosystem services

Arid, semi-arid and dry subhumid areas

Causes:

climatic variation

Anthropogenic activities

Affects ¼ world's land surface, containing 1/5 of the world's population

Context

- Introduction of alternative
 livelihoods that lead to less negative
 impacts on dryland resources
- Creation of economic opportunities in these lands

- Management of water resources;
- Conservation of soil properties;
 - Ensure food and water security
 - Ensure biological and landscape diversity

Basic and fundamental Resources

Problem due to shortage, specially in some regions of the world

Context

Energy crop systems

✓ Renewable sources of energy and biomaterials

✓ But - Intensive use of land

Water resources depletion

Mineral resources depletion (fertilisers)

Soil nutrient depletion

- Existence of large volumes of treated wastewaters:
 - ⇒Nutrient rich (N, P, K, organic matter, etc.)
 - ⇒It takes energy resources and other resources to treat
- Energy crops production: Wastewater depuration (phytodepuration)?

Aim

- To merge energy crop production with wastewater management
- - Biomaterials/bioenergy production
 - Economic opportunities

Environmental benefits

Aim

Environmental benefits:

- wastewater remediation
- Reuse of ions (nutrients) as fertilizers
- Water and wind erosion and runoff control
- Soil properties restoration induced by vegetation
- Carbon sequestration

Energy crops

- To reverse desertification
- → Species need to:
 - display low water and nutrient demands
 - present commercial value for a specific region
 - → have few environmental constraints,
 - → no competition with food crops,
 - ⇒ be integrated with waste management

Wastewater reuse

- In water-scarce regions,
 - → marginal-quality waters
 - an increasingly important component of agricultural water supplies
 - economic, social and environmental benefits
 - → But also with some limitations

Wastewater reuse - benefits

- → Fulfillment of growing water demands
- ⇒ Scarcity/seasonality of rainfall is counterbalanced
- Preservation of freshwater supplies
- → Minimization of fertilizer needs
- Reduced energy use and chemical pollution from wastewater treatment
- Reduced contamination of water bodies

Wastewater reuse - benefits

- Nutrient and water resource recycling
- Restoration of soil properties
- → Biological and landscape diversity increment
- → Increased plant growth and productivity
- → Increased carbon sequestration
- → Increased energy savings
- → Reduction of GHG emissions

Wastewater reuse - benefits

- Creation of economic opportunities in waterscarce regions
- → Economically viable use of biomass
- → Reduction of cultivation costs
- → Reduction of water treatment costs
- → Prevention of rural exodus
- → Creation of employment

Wastewater reuse - constraints

- Low effluent availability in terms of volume to match crop needs
- Matching hydraulic loading and contaminant remediation by the crop
- Variability of effluent production and quality over time
- Distance between wastewater treatment plant and fields

Wastewater reuse - constraints

- Matching effluent production with cropgrowing season
- → Need for a storage facility for wastewater
- Wastewater quality may limit its application
 - Excess dissolved salts, Na, heavy metals, chlorine

Wastewater reuse - constraints

- Leaching and runoff of contaminants to water bodies
- → Accumulation of contaminants in the soil
- → Yields can be affected
- Biomass quality may limit its industrial use

Case studies

•Growth, Productivity and Biomass Quality of Kenaf Irrigated with wastewaters – the effect of ammonium ion

(Fernando et al 2011)

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

Aim of the Study

→ to evaluate

- → growth responses
- quality and biomass productivity
 - Kenaf (G4)
 - irrigated with wastewaters
 - Different NH4 concentrations

Ammonium ion

- Important source of nitrogen for many plant species
 - → But it can also be toxic
- → Problematic in treated wastewaters
 - Toxic to most fish species
 - \Rightarrow High dissolved O₂ consumption

 - → Water disinfection is more difficult

Results

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

FCŁ

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

FCŁ

Results

26

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

Case studies

•Growth, Productivity and Biomass Quality of Miscanthus Irrigated with Zn /Cu contaminated wastewaters

(Bandarra et al 2013)

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

Aim of the Study

→ to evaluate

- quality and biomass productivity
 - Miscanthus x giganteus
 - Miscanthus floridulus
 - Miscanthus sinensis
 - irrigated with wastewaters contaminated with Zn/Cu
 - **Evaluation percolated water+soil**

28

Zn and Cu ions

Problematic in wastewaters

- Risk of polluting ground and surface water
- → excess
 - - ⇒ by entering the food chain
 - → to environment
 - ⇒ by affecting the ecosystems services

Experimental Layout

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

30

FCŁ

Results - Productivity

31

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

Results – Biomass Quality

32

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

Results – Biomass Quality

Zinc content

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

33

FCŁ

Results – Biomass Quality

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

Results – percolated waters

Results – percolated waters

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

FCŁ

Results – soils

JATROpha in MEDiterraneo, JatroMed, 8th may 2014

37

Conclusions and recommendations

Conclusions and recommendations

Recommendations
 site-specific factors should be properly assessed to evaluate the adequacy among crop, location and wastewater irrigation
 bench-scale treatability studies should be conducted prior to field implementation

Conclusions and recommendations

Acknowledgements:

Fibra and Optima projects (EU)

Thank you for your attention

41

JATROpha in MEDiterraneo, JatroMed, 8th may 2014