

2nd JatroMed International Workshop 8 May 2014, Algiers, Algeria

JatroMed implementation in North Africa

Jatropha curcas L.

AGRICULTURAL UNIVERSITY OF ATHENS Dr. Eleni G. Papazoglou, email: elpapazo@aua.gr

Jatropha curcas L. (physic nut, γιατρόφα) Family: Euphorbiaceae

Perennial shrub or small tree (3-5 m in height) Life-span more than 50 years Semi-evergreen plant Monoecious plant Fruits bearing 3 black seeds Non food crop Seeds and oil are toxic and poisoning to humans and animals

2nd JatroMed International Workshop 8 May 2014, Algiers, Algeria

Ecological Requirements

Survive in a wide range of environmental conditions

Soil Marginal and unutilised soils Best soils: aerated sands and loams Preferred pH: 6.0 and 8.0 <u>Temperature</u> Mean annual temperatures: 18-28° C, Mean maximum temperatures: 35-45° C Sensitive to frost

Favorable attributes and considerable potentials

- ✓ hardiness
- ✓ drought resistance
- ✓ rapid growth
- ✓ high oil content
- ✓ low input requirements
- ✓ multiple uses

2nd JatroMed International Workshop 8 May 2014, Algiers, Algeria

Evaluation of the energy crop Jatropha curcas as a mean to promote renewable and sustainable energy for the Mediterranean region (JatroMed)

JatroMed is co-financed by the European Union

Reference Call for Proposals: EuropeAid/128320/C/ACT/Multi)

<u>Title of the Call for Proposals</u>: Thematic Programme for Environment and sustainable management of natural resources, including energy <u>Contract Number</u>: 2011 / 221-037

Duration: 4years (Start Date: 28 June 2011)

Budget: 1.817.496 Euro

COORDINATOR:

Agricultural University of Athens-Research Committee (AUA), GREECE

PARTNERS:

1) Agricultural Engineering Unit, the Agricultural Research and Experimental Council (CRA ING), ITALY

2) City for Scientific Research and Technology Applications (MuCSAT), EGYPT

3) Centre de Développement de la Région de Tensift (CDRT), MOROCCO

4) Centre de Développement des Energies Renouvelables (CDER), ALGERIA

OVERALL OBJECTIVE: promote Jatropha curcas production as part of the sustainable development policies/strategies, in the sectors of energy and agriculture, in undeveloped rural areas of Egypt, Morocco and Algeria

SPECIFIC OBJECTIVES:

✓ Test the adaptability and assess the agronomic potential of a wide range of genotypes of JC in demo fields

✓ Analyze the cost/benefit of producing JC oil and of the environmental impact of Jatropha cultivation in each target country

✓ Introduce the most suitable mechanical harvest method according to the size of the plantation

✓ Contribute to promoting JC production, both locally, particularly in poor arid or semi-arid areas, and at the national level

✓ Familiarise local population and stakeholders with JC crop, its management and uses

ACTIVITY 2: SELECTION OF *J. curcas* GENOTYPES

Geographical distribution of genotypes

Allocation of genotypes to target countries

EGYPT	MOROCCO	ALGERIA
Michoacán (Mexico)	Michoacán (Mexico)	Michoacán (Mexico)
JCLMax 3.0 (India)	JCLMax 3.0 (India)	JCLMax 3.0 (India)
GHS-B (Brazil)	Mali (Mali)	Veracruz (Mexico)
JAT106 (India)	QVP 3014 (India)	GHN-D (Dominican Republic)

Activity 3 : CULTIVATION, PRODUCTION & MONITORING

CDRT demo field in Essaouira

CDER demo field in Adrar

MuCSAT demo field in Borg El Arab

Activity 3: LAYOUT OF DEMONSTRATION FIELDS

Measured parameters in the field: 18 Measured parameters in laboratory: 11

Activity 3: DEMO FIELDS - IRRIGATION SYSTEM

Area per country:	4 hectares
Area per genotype:	1 hectare
Number of plots per genotype:	24
Total number of plots per country:	96
Surface of each plot:	279 m ²
Number of plants per plot:	36
Number of plants per genotype:	864
Number of plants per country:	3456

Well+ Motor

Tank with fertiliser

Plot

Drippers 4lit/hour 2 drippers per plant

Activity 3: TREATMENTS

TREATMENT A: FertilizationTreatment A1: 10 g of urea per plantTreatment A2: 10 g of 20 N-20 P-20 K per plantEvery month both doses will be increased by 5 g

TREATMENT B: Irrigation Treatment B1: 4L/hour every 7 days Treatment B2: 8L/hour every 7 days

TREATMENT C: Pruning Treatment C1: Cup-shaped plants Treatment C2: Tree-shaped plants

Plots		Freatments
1	\rightarrow	A1-B1-C1
2	\rightarrow	A2-B1-C1
3	\rightarrow	A1-B2-C1
4	\rightarrow	A2-B2-C1
5	\rightarrow	A1-B1-C2
6	\rightarrow	A2-B1-C2
7	\rightarrow	A1-B2-C2
8	\rightarrow	A2-B2-C2

Egypt Borg <u>El Arab</u> Region - 30 ° 53 ´ 32.13 ´´ N, 29 ° 32 ´ 54.98 ´´ E

Field preparation

Transplantation

2-4 July 2012

7 September 2012

20 November 2012

15 June 2013

15 November 2013

C1: Cup shape

C2: Tree shape

25-26 February 2014: Second year pruning

Oil extraction and analyses

	JCL Max 3.0	Michoacán	GHS-B	JAT-106
	(%)	(%)	(%)	(%)
A1B1C1	31.78	40.11	38.37	37.58
A2B1C1	31.40	34.42	27.50	36.85
A1B2C1	37.11	37.93	36.76	32.13
A2B2C1	33.96	35.14	36.44	33.75

Oil content in seeds

Data 140.00 plant height plant **TREATMENT A: Fertilization Treatment A1: 10 g of urea per plant** Michoacan 60.00 Mean of Treatment A2: 10 g of 20 N-20 P-20 K JAT106 40.00 ICI Max per plant 20.00 GHS-B 0.00 A2.81-C - A282C " ALBLQ A182-C ALBICI A281-C1 A1.82.C1 A2.82.C2 Treatments

TREATMENT B: Irrigation Treatment B1: 4L/hour every 7 days Treatment B2: 8L/hour every 7 days

TREATMENT C: Pruning Treatment C1: Cup-shaped plants Treatment C2: Tree-shaped plants

Morocco

Essaouira Region: commune Hadd Dra - 31 ° 34 ´ 39.56 ´´N, 09 ° 32 ´ 19.45 ´´ W

4 March 2012

18 March 2012

18 April 2012

30 May 2012

Field preparation

March 2012: the demo field at the initial state

Field clearing and leveling

Digging the borehole

Water basin and operation room construction

Transplantation

23 September 2012

Transplantation success: 99%

23 November 2012

17 February 2013

7 July 2013

29 September 2013

10 October 2013

9 February 2014

1 March 2014

8 March 2014: harvested fruits before pruning

8-9 March 2014: Second year pruning

Oil extraction

Fruits harvested on March 2014

Oil extraction using the Soxhlet method

	JCL Max 3.0	Michoacán	Mali	QVP	
	(kernel)	(kernel)	(seeds)	(seeds)	
Oil content	53.20%	39.60%	46.00%	37.50%	

Data

TREATMENT A: Fertilization Treatment A1: 10 g of urea per plant Treatment A2: 10 g of 20 N-20 P-20 K per plant

TREATMENT B: Irrigation **Treatment B1: 4L/hour every 7 days Treatment B2: 8L/hour every 7 days**

TREATMENT C: Pruning Treatment C1: Cup-shaped plants Treatment C2: Tree-shaped plants

JatroMed

ACT.3 JatroMed IMPLEMENTATION IN MOROCCO

Algeria

Adrar Region - 27° 54' N, 00° 11' W

Image - 2012 DigitalGlobe

6000

2012 Google

Nursery

* *

29 February 2012

4 April 2012

Transfer to a shady place 14 May 2012

Nursery 1: 23 January 2013

Nursery 2: 28 January 2013

Field preparation

Overall view of the 04 ha field

Levelling operation

Field preparation accomplished on two periods: March and October 2012

Irrigation system

Layout of irrigation system

October-November 2013

11 January 2014

1 April 2014

Problems faced

Cricket attack

Fusarium infection

Verticillium infection

Technical visit 11 January 2014

Pith affected by bacteria

Data

Jatropha characteristics affecting harvest

- Wide flowering and ripening period
 Flowering and, therefore, fruiting are continuous
 At the same inflorescence there are fruits of different ripening stage
- >Harvest is labor intensive and difficult to mechanize

The yellow and brown fruits are harvested by beating the branches with sticks to knock them to the ground, or by hand picking.

Manual harvest

Pros: cheap; no maintenance; selective harvesting <u>Cons:</u> labor intensive work; time consuming relative to the amount of oil produced (with 50 kg in average per person per day)

Mechanical harvest

Laboratory tests

Field tests in Agadir, Morocco (22-26 October, 2012)

Fruit detachment force (FDF) and its ratio with fruit weight

	Fruit								
		Unripe		Ripe					
	mean	max	min	mean	max min				
FDF	14,5	23,2	4,6	11,5	20,6	2,4			
(N)									
FDF W ⁻¹		2,54		1,17					
(N g ⁻¹)									

	FDF W ⁻¹ (N g ⁻¹)						
	Unripe Ripe						
Olive tree	49.72	10.02					
Almond	20.60	1.80					
Pistacio	38.70	6.80					

•Frequency is a measurement of how many cycles can happen in a certain amount of time (cycles per second).

•Hertz is the unit of frequency, and just means how many cycles per second (Hz).

•Amplitude is a measure of how big the wave is.

•It takes more energy to make a bigger amplitude wave.

•The amplitude of a wave is measured as: the height from the equilibrium point to the highest point of a crest or the depth from the equilibrium point to the lowest point of a trough

Range of frequencies and amplitudes required to drop down only the ripe fruits

Modifying a commercial machine with beating harvesting system

Beating system that will be adapted or modified to different needs or applications. The device is compound of an air compressor with the capacity to supply two pickers (rakes) and two pneumatic scissors at the same time.

Main goals:

✓ Analyze the costs of jatropha cultivation

✓ Compare the costs of jatropha in the three demo fields (Egypt, Morocco, Algeria)

✓ Implement an environmental-energy analysis of the jatropha production process

A/A	Country	Genotypes	Treatments	A/A	Country	Genotypes	Treatments	A/A	Country	Genotypes	Treatments	
1		Michoacan	A1B1	17			A1B1	33			A1B1	
2			A2B1	18		Michoacan	A2B1	34		Michoacan	A2B1	
3			A1B2	19			A1B2	35			A1B2	
4			A2B2	20			A2B2	36			A2B2	
5			A1B1	21			A1B1	37			A1B1	
6		ICI May 3.0	A2B1	22			A2B1	38			A2B1	
7		JCLIVIAN J.U	A1B2	23	0	JULIVIAN J.U	A1B2	39	ria	JULIVIAX 5.0	A1B2	
8	ot		A2B2	24	Ú Ú Ú		A2B2	40			A2B2	
					2				98			
9	ш		A1B1	25	10		A1B1	41	Al	Veracruz	A1B1	
10			A2B1	26	2		A2B1	42			A2B1	
11		0113-0	A1B2	27		QVF 3014	A1B2	43			A1B2	
12			A2B2	28			A2B2	44			A2B2	
13			A1B1	29			A1B1	45			A1B1	
14		IAT106	A2B1	30		Mali	A2B1	46		GHN-D	A2B1	
15		JAITOO	A1B2	31		IVIAII	A1B2	47		GHN-D	A1B2	
16				A2B2	32			A2B2	48			A2B2

ABC simulation platform. Cost analysis scenarios per country - all genotypes and treatments considered (48 scenarios)

✓ Machinery (tractors, pumps, etc.)

✓ Raw material (seeds, fertilizer, etc.)

✓ Energy (fuel, electricity, etc.)

The activities considered for the economic analysis are:

Activity needs:

✓ Labour

- **1.Sowing seeds in nurseries**
- 2.Field preparation
- 3. Transplantation

4.Fertilization

5.Irrigation

6.Pest control

7.Weeding

8.Pruning

9.Harvesting

10.Preparation of harvested fruits and possible storage

- **11.Transportation of seeds to oil extraction**
- 12.Oil extraction

Investment cost of jatropha plantation (representative for all other treatments and genotypes)

Investment cost for ALGERIA if greenhouse+irrigation are owned: 3300 €/ha Investment cost for EGYPT: 3700 €/ha (greenhouse+irrigation: 2200 €/ha) Investment cost for MOROCCO: 5300 €/ha (greenhouse+irrigation 3200 €/ha)

42,01

1,03

987,18

125,07

33,69

213,49

Annual equivalent cost of production of Jatropha for treatment A1B1

0,32

85,99

8

1

3,00 126,44 433,19

0,03

Spraying (Pests)

Transplantation

TOTAL (€/ha)

Annual equivalent cost of production for EGYPT: 2300 €/ha Annual equivalent cost of production for MOROCCO: 1100 €/ha

Comparison of total Annual equivalent cost between Egypt, Morocco and Algeria

Energy Analysis for Jatropha demo fields

Comparison of energy inputs for the three fields and for combinations of treatments of irrigation and fertilization

Distribution of Energy Inputs in all Operations for the three regions – Case of Highest Inputs

✓ Website (www.jatromed.aua.gr)
 ✓ Social media (https://www.facebook.com/Jatromed?ref=hl)
 ✓ Three newsletters released
 ✓ 14 publications in International Conferences
 ✓ One publication in scientific journal
 ✓ Meetings with farmers, local population, politicians, stakeholders
 ✓ Field visits by farmers and stakeholders
 ✓ Knowledge transfer events

Activity 6: DISSEMINATION & EXPLOITATION OF RESULTS

Knowledge transfer events

EGYPT

MOROCCO

ALGERIA

2nd JatroMed International Workshop 8 May 2014, Algiers, Algeria

THANK YOU FOR YOUR ATTENTION Eleni G. Papazoglou: elpapazo@aua.gr

Acknowledgement

This work was supported by the European Union This support is gratefully appreciated