Environmental impact assessment of energy crops cultivation and use

Ana Luísa Fernando

Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia Departmento de Ciências e Tecnologia da Biomassa

Scope of the study

to evaluate the environmental effects positive and negative

due to the production of different energy crops in Europe

Why?

Energy crop systems

- ✓ Intensive use of land
- ✓ Pressure on natural resources
 - biodiversity, water, soil
- ✓ Increment of agrochemicals inputs

Why?

- Energy crop systems
 - √ offer ecological advantages over fossil fuels
 - by contributing to reduction
 - greenhouse gases
 - acidifying emissions

Methodological approach

- ·Oil crops: Rapeseed, Sunflower, Ethiopian Mustard
- •Sugar crops: Sugar beet, Sweet sorghum
- Fiber crops: Hemp, Flax
- Lignocellulosic crops: Reed canary grass, Miscanthus, Switchgrass, Giant reed, Cardoon
- Woody crops: Poplar, Willow, Eucalyptus
- •Food crops: wheat, potato II•Reference System: Fallow

Methodological approach

Impact categories studied

- Emissions to soil, air and water
- Impact on soil
- Impact on mineral and water resources
- Waste production and use
- □ Implications on Biodiversity and Landscape

Data

- **⇒** Field data from literature
- National Organizations
- International Organizations
 - - **⇒** Available data is low
 - □ Upscale to a commercial level can lead to different conclusions from this study

⇒ Fertiliser related emissions:

- - □ Leaching and runoff of NH₄⁺ and NO₃⁻
 (eutrophication)

 - ⇒ Emissions of N₂O (GH effect, ozone depletion)

- Run-off and leaching
 - important fraction on N emissions
- **⇒** Annual crops
 - → N emissions
- Root/rhyzome dynamics-perennials
 - **⇒** Not accounted

⇒ Pesticide related emissions:

- - ⇒ Human health can be affected
 - **⇒** Acute toxicity to water organisms
 - **⇒** Toxicity to fauna
- → Pesticide score was established/crop

 - **⇒** Toxic characteristics of the pesticide

⇒ Nutrient Status:

- Is fertilisers NPK application balanced?
 - **⇒** P accumulation or neutrality in the soil all crops
 - **⇒**Lower levels should be applied
 - **Sweet sorghum**
 - **⇒**Potato
 - ⇒ N and K

⇔Surplus K

- **⇒** Eutrophication of terrestrial ecosystems

 - **⇒** Flax

⇒ Hampered by excess K aplication

⇒ Erosion:

potential damage caused by rainfall

⇒Dependence on site

crossed with

⇒soil cover characteristics of the crops

⇒during their cultivation cycles

⇒ Dependence on crop

each region erosion control actions

Impact on Soil - Erosion

□ perennials
 lower erosion risk

个rainfall interception, 个 surface cover, longer time

Impact on Soil – Soil Properties

- **⇒** higher SOM
- **⇒** Better structure
- □ pH not affected
- ⇒ Permanence in the soil, inputs of residues, root development, soil amendment not so intensive

Impact on Soil – Soil Properties

- **⇒**Woody crops
- ⇔ less SOM and structure
- ⇒allelopathy, reduction of vegetation

Impact on Soil – Soil Properties

- most damaging
- ⇒ high soil revolving, short permanence, litter removal, high soil

- **⇒**deep roots/litter left
- Harvest removes soil

Impact on water resources – water balance

⇒water depletion

Impact on water resources - Hydrology

- ⇒ soil cover minimizes run-off, benefiting perennials
- ⇒ short permanence in soil
- Negative aspect: aquifer refilling slows down
- Deeper roots
- **⇒**High water needs

Impact on mineral resources

Waste production and use

⇒higher risk, soil sticking during harvest

Biodiversity

- ⇒ all crops, monoculture, infringement to biodiversity
- □ reduced soil tillage, agrochemicals, high biomass

Biodiversity

Landscape

- **⇒**Structure
- **⇒**Color
- ⇒blossoming crops benefits
- ⇒highly uniform, ground-hugging crop

Overall results

- **⇔**All, lower impact then potato
- ⇔All, but sugarbeet, lower impact then wheat

Conclusions and recommendations

⇒ growing energy crops does not inflict higher impact on the environment

compared to wheat and potato farming for food, traditional crops in Europe

(Regarding the studied categories)

Conclusions and recommendations

- **⇔**Annual crops
 - **⇔** More impact on the environment
 - markedly due to biodiversity and erosion
- **⇔**Annual and woody crops
 - **⇒** more damaging to soil quality
- **⇒** Differences among crop types, not so evident for the remaining categories

Conclusions and recommendations

- **⇒**Impact reduction strategies
 - Limited to crop management options
 - □ Influences emissions, nutrient status and mineral ore depletion
- **⇔** Other, are site-specific dependent
 - **⇒**Intertwined with crop traits
- **⇒** Adequacy crop-location important issue

This work was supported by the European Union

Project 4F Crops – Future Crops for Food, Feed, Fiber and Fuel

Grant Agreement No: 212811, FP7-KBBE-2007-1

Thank you

for your attention

