

JatroMed First Int. Workshop on Energy Crops in the Mediterranean Region (ECMR-1): **Opportunities and Challenges**

Cardoon as a multipurpose energy crop: Opportunities and challenges

M.D. CURT Agro-Energy Group (GA-UPM)

Technical University of Madrid, Spain

November 15, 2013 Marrakech Moro/260

INDEX

- **1. Introduction to the species** *C.cardunculus*
- 2. Cynara as an energy crop
- 3. Applications of cynara crop
- 4. Opportunities and Challenges
- 5. Conclusions & recomendations

Cynara cardunculus L.

- Member of *Asteraceae*. Native to <u>Mediterranean region</u>. 2n=24.
- <u>Cultivated</u> as a vegetable since ancient times (Mediterranean region).
- <u>Perennial</u> herb ~2 m high. Taproot.
- Leaves basally rosulate, wide base, pinatifid lamina, green to pale greyish.
- Gross heads in corymb-like groups. Dark to pale lilac florets, nectariferous.
- Fruit an <u>achene</u> like <u>sunflower</u>.
- Common names: cardoon (vegetable), cynara (field crop).

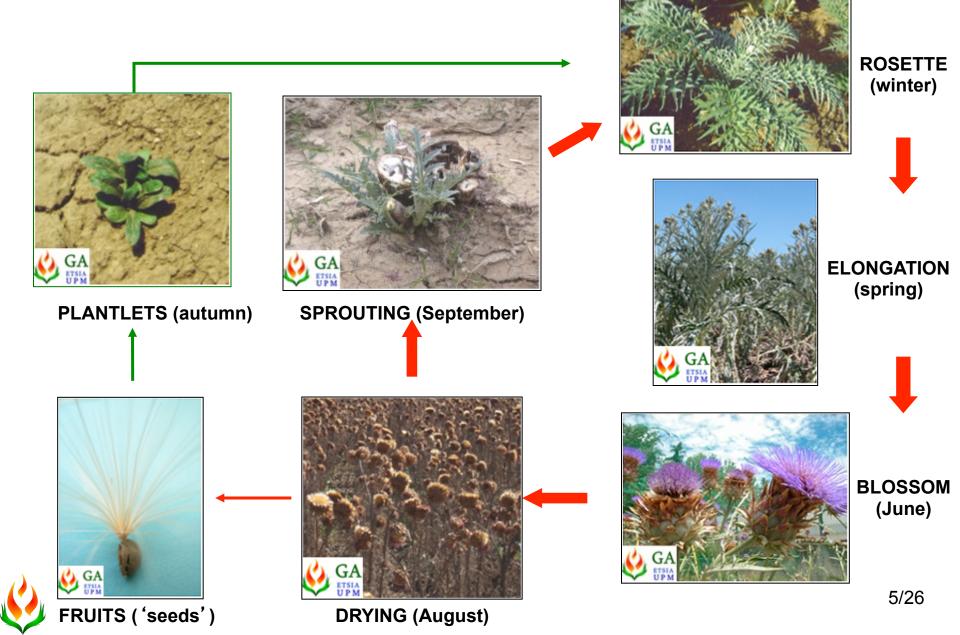
TRADITIONALLY CROPPED FOR:

• BLANCHED LEAF PETIOLES

Labour intensive crop \Rightarrow <u>vegetable</u>.

Tenderness and flavour are ensured through artificial blanching.

• VEGETABLE COAGULANT (RENNET)


Fresh flowers are used as a vegetable rennet for milk clotting, in order to manufacture valuable regional cheeses.

Further info: Int. Dairy Journal, 18(1)(2008): 93-98.

Natural development cycle

Strategies of adaptation to Mediterranean conditions

Use of water fallen in autumn, winter & spring.

Perennial with annual growth cycle

The aerial biomass dries up during summer. Re-growth in early autumn.

Moderate salt tolerant

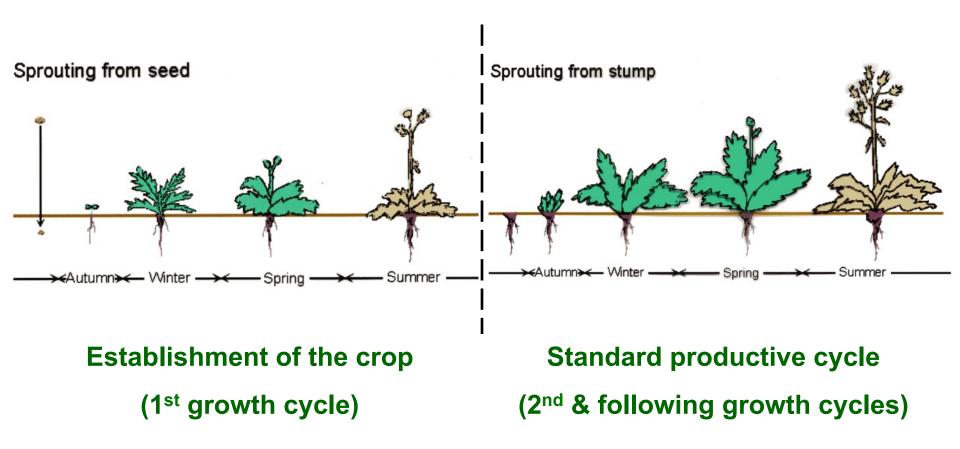
by osmotic adjustment by inorganic ions (Na⁺ and K⁺)

Photosynthesis during wintertime

At 5°C, CO₂ assimilation rate ~6 mmol.m⁻².s⁻¹ (~30 % max. at 25 °C)

10-month period of active biomass growth

Accumulation of carbohydrates (inulin) in roots.


• High efficiency in fertilizers uptake from deep soil layers. Use of lixiviated nutrients.

7-9 m

2. Cynara energy crop

CYNARA AS AN ENERGY CROP

Further info: Ind.Crops Prod. 24(2006): 222-229; Ind. Crops Prod. 33(2011): 1-6.

Crop management

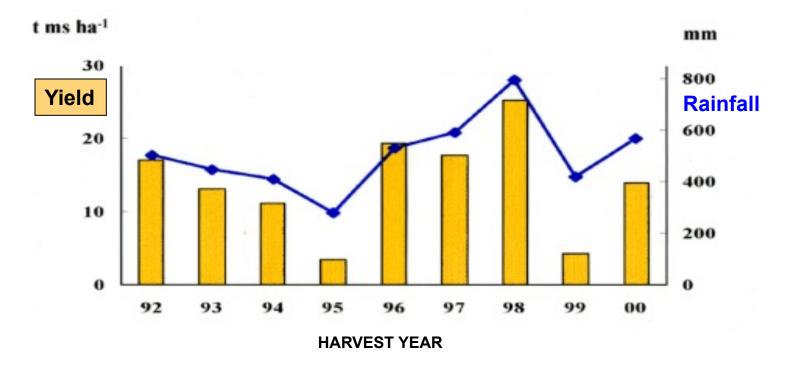
• FIRST YEAR (Establishment)

- Basal dressing dp. soil fertility (gn. 500 kg 9:18:27)
- Ploughing (subsoiling) and harrowing
- •Sowing (4-5 kg seeds/ha) (planting frame: 1 x 0.8)
- Herbicide treatment (e.g.1.5 kg linuron+0.4 kg alachlor per ha)
- Pest control (dimethoate)

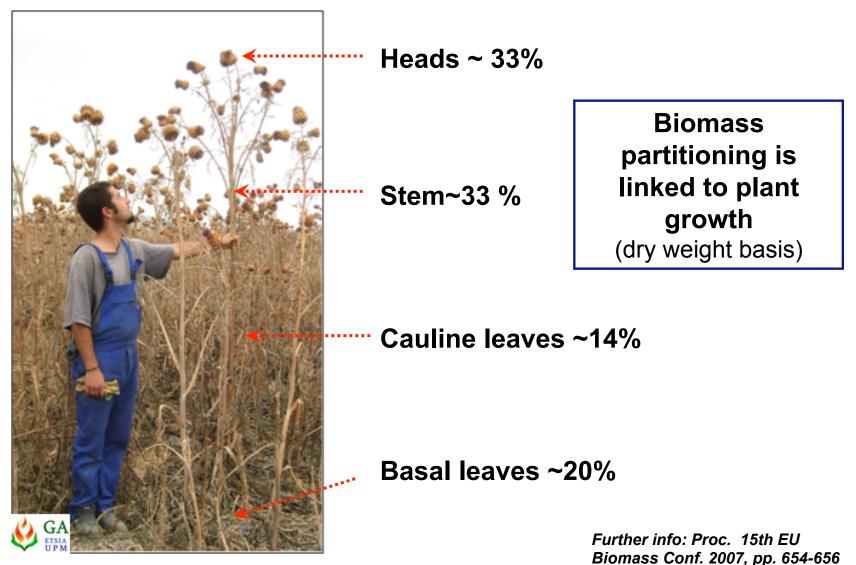
• SECOND & FOLLOWING YEARS (production)

- **Restoration fertilization** (e.g.~ 12.6 N ,3.5 P₂O₅, 20.8 K₂O kg/t dm)
- Pest control (dimethoate)
- Harvest (dry biomass, ripe seeds)

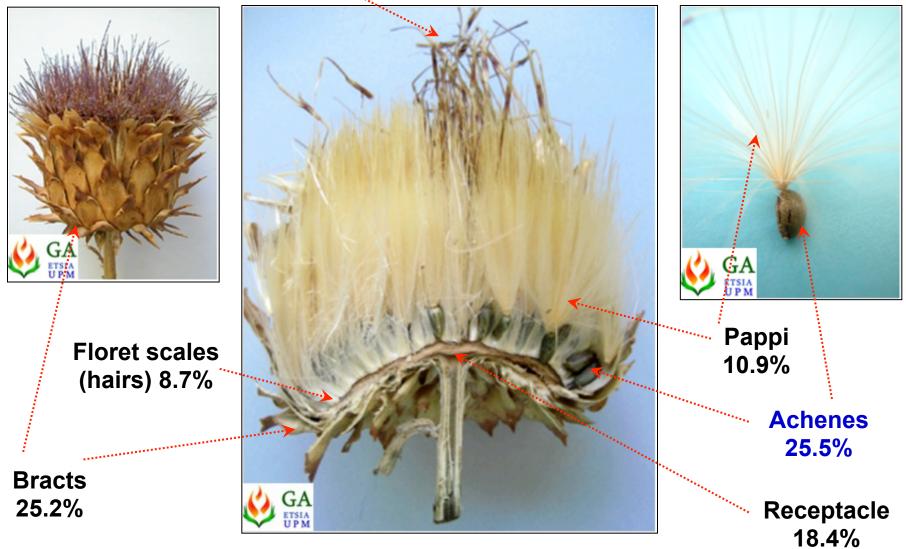
Further info: Biomass & Bioenergy 36 (2012): 404-410



<u>Yields</u> \rightarrow as a rainfed crop, yields depend on rainfall

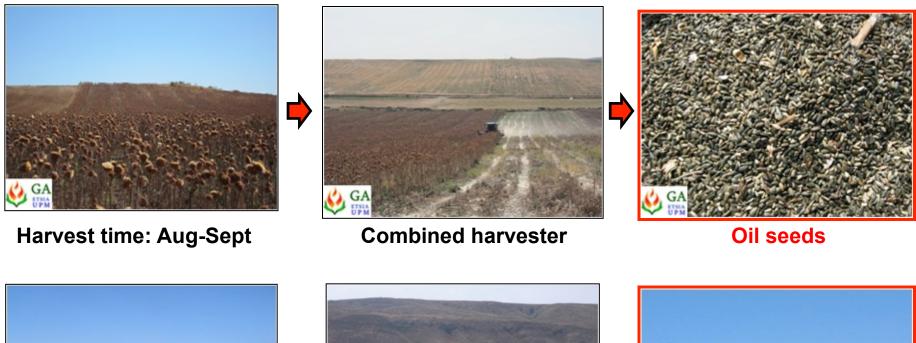

PERENNIAL CROP OF CYNARA, Madrid (Spain) Mean: 14 t d.m./ha.year (~ 470 mm/year)

Further info: Acta Horticulturae 681(2005): 109-115; Biomass Bioenerg. 33(2009): 810-816. Ind.Crops Prod. 24: 222-229; Italian Journal of Agronomy (2001), 5(1-2):11-19.



Crop produce

Florets 11.2%



Further info: *Ind.Crops Prod. 24(2006): 222-229.* Global Change Biology Bioenergy 2(2010): 113-129

14/26

Harvesting (conventional machinery)

Baler

E CARACTERISTICA DE LA COMPACTICA DE LA

Lignocellulosic biomass

Baling

3. Applications

Milled biomass, p_a~0.20 g/cm³

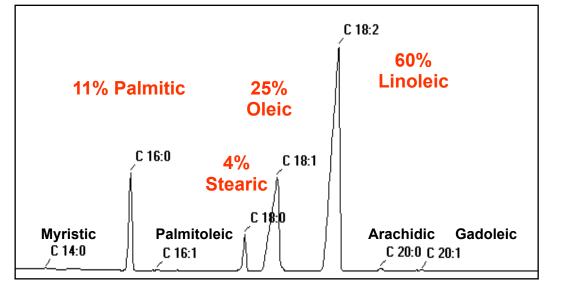
Pellets, $\rho_a \sim 1.12 \text{ g/cm3}$

SOLID BIOFUEL

- Low moisture content at harvest: 10–15 % → No drying is required
- Low apparent density of milled biomass → densification
- Calorific power (LHV): 15-16 MJ/kg
- Chemical characteristics ~ straw.
- Ash, 5% (→10% if soil contamination); K, 2.5
 %; CI, 0.3% (KCI fertilizer affects K, CI)

Further info: Biomass & Bioenergy 41(2012): 145-156; Fuel 87 (2008) 58–69

► LIQUID BIOFUEL: SEED OIL


• Yield in oil seeds:

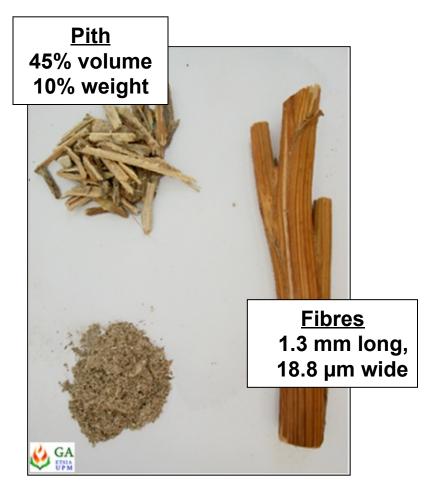
1.0-1.2 t/ha in average conditions (450 mm/y).

Seed oil content:

~ 20-25% (w/w seeds at equilibrium moisture).

Fatty acid oil profile:
~ sunflower oil.

Further info: Biomass & Bioenergy 23 (1)(2002) :33-46; Ind. Crops Prod. 10 (3): 219-228 Biomass and Bioenergy 35(2011): 3167-3173


BIODIESEL FROM CYNARA OIL

- Biodiesel can be prepared by **transesterification** with methanol or ethanol in the presence of a catalyst (common industrial procedure).
- Cynara biodiesel meets the standard for biofuels (EN-14214).

	Properties	Ethyl esters	Methyl esters	EN-14214
	Density 15°C (g cm⁻³)	0.8794	0.889	0.86-0.90
	Viscosity 40° (mm ² s ⁻¹)	4.479	5.101	3.5–5
1 0	Flash point (°C)	184	182	> 101
Carling and	Cloud point (°C)	-5	-4	
PART PART	Cold filter plugging point (°C)	-10	-10	<u><</u> -10**
Bodiesel de Cynara d	Cetane number	66	59	> 51
and the second second second	Carbon residue (% m/m)	0.28	0.36	< 0.3
and the second second second	lodine index	109	117	<120(140*)
CA GA	Phosphorus (mg kg⁻¹)	< 5	< 5	< 10
UPM UPM	Sulphur (% m/m)	< 0.02	< 0.02	< 0.02

GA ETSIA UPM Further info: Industrial &Engineering Chemistry Research (1999), 38 (8):2927-2931; Energy &Fuels (2002), 16 (2):443-450. 18/26 15/19

- The stalks of cynara have succesfully being tested for paper pulp.
- Stalks can be cooked by standard Kraft pulping 44-47% yield with Kappa 11-15.
- <u>Depithing</u> is recommended as a pre-treatment to improve product quality.

Further info: Ind. Crops Prod. (2000), 13:1-10; Ind.Crops Prod. 29(1)(2009): 116-125

PHARMACOLOGICALLY ACTIVE COMPOUNDS

• **Cynarin**: Antioxidant, hepatoprotector and inhibitor of the cholesterol synthesis. Also present in artichoke.

• **Silymarin**: Compound usually obtained from *Silybum marianum*, traditionally used in the treatment of liver diseases.

Silybum marianum. The achenes contain 4-6% silymarin

UPM

Cynara fraction	Silymarin content (%)	
Fresh leaves (Spring)	1.68	
- Fresh petioles& ribs	1.96	
- Leaf lamina	1.56	
Dry stalks (August)	0.90	
Dry leaves (August)	1.23	
Achenes	1.07	
Seed oil	0.01	
Presscake	1.21	
Lees	0.08	

Further info: Acta Horticulturae 681(2005): 461-467. Ind. Crops Prod. 51(2013): 145-151.

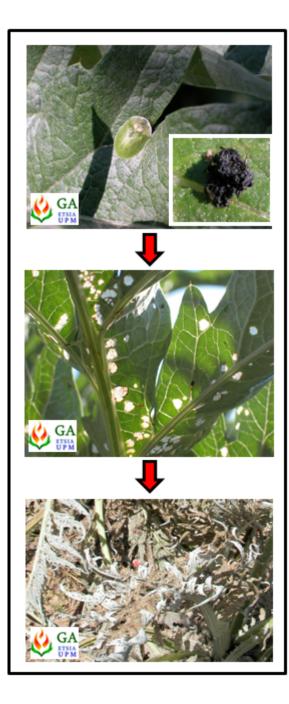
► <u>GREEN FORAGE</u>

•At the rosette stage, high nutritive value for ruminants.

- Compatible with harvest of biomass in summertime. Root reserves support the development of new leaves and allow the completion of the development cycle in the same year.
- Final yield in biomass decreases.

⇒ Cynara may represent a punctual forage resource.

Further info: Annales De Zootechnie (1999) 48: 353-65; *Animal Feed Science and Technology (2000) 87: 203-214.*


4. Opportunities & challenges

OPPORTUNITIES	CHALLENGES
Mediterranean crop	Plant breeding
Dry-farming in Med. conditions	Biomass quality (solid biofuel)
Perennial	Variability of yields (dp. rainfall)
Annual growth cycle	Mechanization
Multipurpose crop	Pest control

OPPORTUNITIES	CHALLENGES	
Mediterranean crop	New accessions (in vitro culture plants)	
Dry-farming in Med. conditions	Biomass mixtures (cynara+wood) Aditives in combustion; specific beds in fluidized bed (gasification)	
Perennial	Not to harvest in drought cycles Awareness of the relationship yield vs rainfall	
Annual growth cycle	I+D+i mechanization. Development of prototypes \rightarrow industry	
Multipurpose crop	Crop surveillance. Preventive treatments	

GA etsia u p m

HEAD BY CRA-ISMA

I+D+i mechanization. Development of prototypes \rightarrow industry

Crop surveillance. Preventive treatments

24/26

5. Conclusions

CONCLUSIONS & RECOMMENDATIONS

- Cynara has been proved to be a versatile crop in dry-farming of the Mediterranean region (pp. 350-750 mm),
- A number of cynara applications has been identified.
- Traditional applications include vegetable and plant rennet.

•The development of Cynara as an energy crop (field crop) is under way; much knowledge has been gained in the past decades.

• The biorefinery concept can be applied to cynara: lignocellulosic plant fractions for solid biofuels, oil seeds for biodiesel and residues for nutraceutics.

- **RECOMMENDATIONS** to be developed as R+D+I topics are:
 - PLANT PROTECTION
 - DEDICATED VARIETIES (PLANT BREEDING)
 - CROP MECHANIZATION

THANKS FOR YOUR ATTENTION

Agro-Energy Group (GA-UPM)

Technical University of Madrid, Spain

www.etsia.upm.es

www.grupodeagroenergetica.com

