Environmental impact assessment of three strategic energy crops for Italy

Dr. Alessandro Suardi, PhD
Since the 2006 sugar CMO reform, the EU sugar beet sector has undergone a drastic restructuring process. In Italy, the sugar production capacity as well as the sugar beet cultivated area have been reduced by 50%.

Conversion of the Italian sugar beet supply chain, to agro-energy supply chains, with the scope to produce biofuels and electricity: high quantity of lignocellulosic biomass were necessary to supply the energy chains

The ex sugar beet farms started this conversion cultivating herbaceous annual and polyannual crops (e.i. sunflower, rapeseed, cardoon, reed giant) and woody crops (poplar, robinia, eucalipto).

The project SuSCACE funded by the Italian Agricultural Ministry (Mipaaf), and coordinated by CRA-ING, with the collaboration of farmers, sugar beet companies and other research units, collected and elaborated the data field of the most strategic energy crops. The crops have been studied and the economic, logistic as well as environmental evaluations have been carried out to facilitate the conversion and the creation of the new energy supply chains.
Aim of this study was the evaluation of the environmental sustainability of three energy crops, considered strategic from the Suscace Project:

- ✅ *Brassica napus*, L.: annual herbaceous oil crop
- ✅ *Arundo donax*, L.: polyannual herbaceous crop for lignocellulosic biomass production
- ✅ *Populus spp.*: polyannual woody crop for lignocellulosic biomass production

The agricultural phase of each energy crop has been evaluated and compared in order to define the most environmental sustainable crop for the Italian territory, using the Life Cycle Assessment (LCA) research methodology.
MATERIAL AND METHODS

Actual data (2009 – 2010)

<table>
<thead>
<tr>
<th>Crop</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapeseed</td>
<td>Farms(n)</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Sur. (ha)</td>
<td>1234,33</td>
</tr>
<tr>
<td>Giant reed</td>
<td>Farms(n)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Sur. (ha)</td>
<td>7,8</td>
</tr>
<tr>
<td>Poplar</td>
<td>Farms(n)</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Sur. (ha)</td>
<td>257,5</td>
</tr>
</tbody>
</table>

Farm data (GPS info, field technician, farm area etc.)

Field data (previous crop, giacitura, irrigation method etc.)

Crop data (cultivar, implantation date, sowing density, field layout ecc.)

Cultivation data (output, inputs and equipment used, work times ecc.)
Defining of the average farms

From the actual dataset have been chosen the parameters more representatives to define the level of agricultural intensification for each species.

By the ANOVA and MANOVA analysis have been identify the groups of farms statistically homogeneous and the average farms (Good and Bad) of these groups.

Environmental Analysis using the LCA method
<table>
<thead>
<tr>
<th>Crop</th>
<th>Field Cod.</th>
<th>Previous crop</th>
<th>Field area (ha)</th>
<th>Variety</th>
<th>Density (p ha⁻¹)</th>
<th>Yield (t ha⁻¹)</th>
<th>N (kg ha⁻¹)</th>
<th>P₂O₅ (kg ha⁻¹)</th>
<th>Herb. (l ha⁻¹)</th>
<th>Pest. (l ha⁻¹)</th>
<th>Energy (kWh ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapeseed (G)</td>
<td>24040001</td>
<td>Wheat</td>
<td>9</td>
<td>PR W 14</td>
<td>740000</td>
<td>2,40</td>
<td>67</td>
<td>-</td>
<td>2,2</td>
<td>0,0</td>
<td>606.14</td>
</tr>
<tr>
<td>Rapeseed (B)</td>
<td>24034001</td>
<td>Wheat</td>
<td>34,00</td>
<td>Vectra</td>
<td>740000</td>
<td>1,22</td>
<td>88,00</td>
<td>-</td>
<td>2,2</td>
<td>0,0</td>
<td>491.07</td>
</tr>
<tr>
<td>Giant reed (G)</td>
<td>13022002</td>
<td>Wheat</td>
<td>10000</td>
<td></td>
<td>41,9</td>
<td>125.5</td>
<td>0.45</td>
<td>0.45</td>
<td>305.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant reed (B)</td>
<td>15027002</td>
<td>Wheat</td>
<td>10000</td>
<td></td>
<td>27,2</td>
<td>83.6</td>
<td>0.99</td>
<td>0.99</td>
<td>380.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poplar (G)</td>
<td>15028001</td>
<td></td>
<td>5700</td>
<td></td>
<td>16,4</td>
<td>34.2</td>
<td>0</td>
<td>2.02</td>
<td>179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poplar (B)</td>
<td>14005001</td>
<td></td>
<td>5700</td>
<td></td>
<td>4,8</td>
<td>20.5</td>
<td>40.9</td>
<td>1.36</td>
<td>209</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MATERIAL AND METHODS

Software: SimaPro 7.3.3 (Prè Consultants, Amersfoort, NL)
Impact method: Recipe 2008
Functional unit: 1 Gj of biomass produced and 1 ha of cultivated land (sensitivity analysis)
System boundaries: Agricultural production phase (input, output), including the inputs production chains.

Models to evaluate the nitrogen and phosforic fertilizers emissions

NH₃, N₂O on the air and NO₃ on the water (Brentrup F. et. al., 2000).
The emissions on the water caused by P₂O₂ fertilization (Nemecek T & Kagi T, 2007).

Assessment of the herbicides and pesticides fractions on the ground, air and water

It was adopted the model proposed by Hauschild (2000).

Equipments

It was considered the emissions generated by the use of the equipments as proposed by Monti et al. (2009)

The impact generated by 1 GJ of biomass produced has been assessed by the ReCiPe Endpoint 2008 method, that consists of two groups of impact categories:

“midpoint level”

“endpoint level”

Inventory data is associated with impact categories at the “midpoint” level by characterization factors. The impact categories are converted and aggregated to three damage categories by weighing factors at “endpoint” level:

Human health,

Ecosystems,

Resources.
Recipe 2008 method scheme

ReCiPe 2008: relation among the inventory data - LCI (on the left), midpoint factors (in the middle) and endpoint factors (on the right) (Source: Goedkoop, 2009)
CHARACTERIZATION – Energy based comparison (1 GJ)

- Rapeseed (B)
- Rapeseed (G)
- Poplar chip (B)
- Poplar chip (G)
- Giant reed chip (B)
- Giant reed chip (G)
NORMALIZATION – Energy based comparison (1 GJ)
Through the Recipe 2008 methodology, all the emissions have been sorted into three macro-categories and the global impact for each process has been evaluated by assigning eco-scores (1/1000 of the annual environmental impact of an European citizen).

Resources:
- the exhaustion of metals (MD)
- fossil resources (FD)

Ecosystems:
- the impact of the climatic change on ecosystems (CCE)
- land acidification (TA)
- freshwater eutrophication (FEu)
- terrestrial freshwater and marine eco-toxicity (TE, FEc, ME)
- urban and agricultural land occupation (ULO, ALO)
- the transformation of natural soil (NLT)

Human health:
- impact of climatic change on human health (CCHH)
- ozone layer depletion (OD)
- human toxicity (HT)
- formation of photochemical oxidants (POF)
- formation of particulates (PMF)
- ionizing radiations (IR)
GOOD AGRICULTURAL PRACTICES

Rapeseed:

Good management of the fertilization: it is possible a reduction of fertilizers > 50% (Rathkea et al. 2006)

- Minimum tillage or direct seeding when possible (to evaluate case by case)

Sowing period: It is critical for the drastical reduction of the emissions. Infact, an early sowing permit to reduce the N losses caused by the leaching.

Type of fertilizer: Ammonia + denitrification inhibitors

Good soil drainage: reduction of the denitrification (Brentrup et al., 2000).

Presence of Sulfur in the soil – improved used of N

Poplar and Giant reed:

Optimize the fertilization (Arundo d.)— to evaluate case by case (reduction of ash content <20% in autumn harvesting (m.c. <10%)

Biofilter— (Perttu 1998; Karacic 2005; Dickmann 2006; Bisoffi et al. 2009).

Choice of the best harvesting logistics – one or two times; Chipping or baling

Correct sizing of tractors and equipment: reduction of direct (fuel consumption) and indirect emission (materials used for the construction)

Use clones of more productive
SENSITIVITY ANALYSIS

Energy bases (GJ) vs surface bases (ha)

<table>
<thead>
<tr>
<th>Energy bases (GJ)</th>
<th>Surface bases (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapeseed (B)</td>
<td>Poplar chip (B)</td>
</tr>
<tr>
<td>(G)</td>
<td>(G)</td>
</tr>
<tr>
<td>Rapeseed (G)</td>
<td>Poplar chip (G)</td>
</tr>
<tr>
<td>(B)</td>
<td>(G)</td>
</tr>
<tr>
<td>Giant reed chip (B)</td>
<td>Giant reed chip (G)</td>
</tr>
</tbody>
</table>

- Rapeseed: 3.66 ± 1.52
- Poplar chip: 0.45 ± 0.21
- Giant reed chip: 0.30 ± 0.11

- Rapeseed: 153.66 ± 15.90
- Poplar chip: 66.22 ± 7.34
- Giant reed chip: 155.54 ± 27.42
CONCLUSION

1- Agricultural phases: the most critical impact category

“Fossil depletion”

“Climate change”

2- Rapeseed resulted the most impactful crop on energy bases (GJ)

- Low yield (even with high LHV)
- The poliannual crops resulted more sustainable.
- It is more convenient to use the whole plant than the seeds
- Arundo donax represent the best solution as well as Poplar, on energy bases, because the high productivity.
3- On the surface bases (ha) – Arundo donax is most impactful crop

-Cause the annual fertilization and harvesting with selfpropelled harvesters

-Poplar resulted the best solution also on the surface bases because the fertilizations and harvesting every two years.

Poplar resulted the energy crop more environmental sustainable for the Italian territory, as substitute of the sugar beet, and in the geographical area more adapt for its grown.
- The LCA methodology, presents criticity due to lack of methodologies and impact models designed specifically for the agricultural sector.

- However It is still considered as an effective comparative method of the environmental sustainability of systems and supply chains.

- In a comparison of different energy crops, assuming the cultivation in the same areal and with the same environmental variables, it is conceivable that the real environmental impact generated will be different from that produced by the model, but proportionally wrong in different scenarios. So, the problem results marginal in a relative comparison.
Thank you for your attention

Alessandro Suardi
alessandro.suardi@entecra.com
MATERIAL AND METHODS

<table>
<thead>
<tr>
<th>Crops</th>
<th>LHV (MJ kg(^{-1}))</th>
<th>Yield (kg ha(^{-1}))</th>
<th>Energy Output (GJ ha(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapeseed (G)</td>
<td>26,8*</td>
<td>2400</td>
<td>64,32</td>
</tr>
<tr>
<td>Rapeseed (B)</td>
<td>26,8*</td>
<td>1220</td>
<td>32,70</td>
</tr>
<tr>
<td>Giant reed (G)</td>
<td>16,0**</td>
<td>41900</td>
<td>670,40</td>
</tr>
<tr>
<td>Giant reed (B)</td>
<td>16,0**</td>
<td>27200</td>
<td>435,20</td>
</tr>
<tr>
<td>Poplar (G)</td>
<td>18,5***</td>
<td>16400</td>
<td>303,40</td>
</tr>
<tr>
<td>Poplar (B)</td>
<td>18,5***</td>
<td>4800</td>
<td>88,80</td>
</tr>
</tbody>
</table>

* The rapeseed's LHV has been calculated considering an oil content of 34% and a press cake of 63% and multiplying the quantity with the corresponding LHV, and then summed (LHV of oil 37,4 MJ/kg (AAVV, 2007) and LHV of press cake 21,2 MJ/kg (Fonte AIEL, 2009a). (0,34 kg *37,4 MJ) + (0,63 kg *21,2 MJ).

** Source: ENAMA, (2010)

*** Source: AIEL, (2009)